A Study of Supervised Machine Learning Techniques for Structural Health
Monitoring

William Nick Joseph Shelton

Kassahun Asamene Albert Esterline

North Carolina A&T State U. North Carolina A&T State U. North Carolina A&T State U. North Carolina A&T State U.

Department of Comp. Sci.
Greensboro, NC 27411
wmnick @ncat.edu

Greensboro, NC 27411
jashelt] @ncat.edu

Abstract

We report on work that is part of the development of an agent-
based structural health monitoring system. The data used are
acoustic emission signals, and we classify these signals ac-
cording to source mechanisms. The agents are proxies for
communication- and computation-intensive techniques and
respond to the situation at hand by determining an appropriate
constellation of techniques. It is critical that the system have
a repertoire of classifiers with different characteristics so that
a combination appropriate for the situation at hand can gen-
erally be found. We use unsupervised learning for identifying
the existence and location of damage but supervised learning
for identifying the type and severity of damage. This paper
reports on results for supervised learning techniques: support
vector machines (SVMs), naive Bayes classifiers (NBs), feed-
forward neural networks (FNN5s), and two kinds of ensemble
learning, random forests and AdaBoost. We found the SVMs
to be the most precise and the techniques that required the
least time to classify data points. We were generally disap-
pointed in the performance of AdaBoost.

Introduction

Structural health monitoring (SHM) provides real-time data
and consequently information on the condition of the mon-
itored structure whose integrity may be threatened by such
things as corrosion and cracking. This paper reports on re-
search related to SHM that has been carried out as part of the
NASA Center for Aviation Safety (CAS) at North Carolina
A&T State University. Ultimately, the target structures will
be aircraft, but experiments at this stage are carried out on
laboratory specimens.

Our architecture involves a multiagent system that directs
a workflow system. Agents typically serve as proxies for
techniques with intensive communication or computation re-
quirements. Wooldridge defined an agent as an autonomous,
problem-solving, computational entity that is capable of ef-
fectively processing data and functioning singly or in a com-
munity within dynamic and open environments (Wooldridge
2009). The agents in our system negotiate to determine a pat-
tern of techniques for solving the task at hand, and they com-
municate this pattern to our workflow engine (implemented
on one or more high-performance platforms), which actually
carries out the tasks on the data streams provided. The mul-
tiagent system is thus the brains and the workflow engine the
brawn of our SHM system (Foster, Jennings, and Kesselman

Department of Comp. Sci. Department of Mechanical Eng.

Department of Comp. Sci.
Greensboro, NC 27411
esterlin@ncat.edu

Greensboro, NC 27411
glbulloc@ncat.edu

2004). Much of the intelligence here is finding the appropri-
ate techniques for the situation at hand. In one situation, we
might want a given task done quickly with only rough accu-
racy, while in another situation accuracy may be paramount
and speed of only secondary importance. Regarding the re-
sults of machine learning for SHM, we would like an assort-
ment of classifiers to provide a range of possibilities for the
diversity of situations that arises in SHM.

The data we use are acoustic signals, and the condition of
greatest interest is crack growth. Since signal sources are un-
observable, classifying acoustic signals by their source must
be based on machine learning. Sensing here is passive: no
energy is required to generate or sense the signals (although
energy is required to store and communicate the data). Once
an event that is sensed via its acoustic emission has been
classified, we may address a multitude of issues and provide
diagnoses of the problems. Note that there may be more than
one valid classification scheme for events detected via their
acoustic emissions.

In SHM, data is interpreted by extracting streams of vec-
tors of feature values from the sensor-data streams. Fea-
ture vectors are classified as to the events producing sensed
signals by classifiers that have been trained with machine-
learning techniques. For our experiments, a correlation co-
efficient is computed between an observed waveform and
six reference waveforms that are generated from numerical
simulations of acoustic emission events. The vector of all
six correlation coefficients characterizes the waveform. Our
dataset consists of 60 samples from the work reported by
Esterline and his colleagues (Esterline et al. 2010).

Worden and his colleagues (Worden et al. 2007) have for-
mulated seven axioms for SHM that capture general aspects
that have emerged in several decades of experience. Of par-
ticular interest is their Axiom III, which states that unsu-
pervised learning can be used for identifying the existence
and location of damage but identifying the type and sever-
ity of damage can only be done with supervised learning.
Supervised learning tries to generalize responses based on a
training set with the correct responses indicated. Unsuper-
vised learning tries to categorize the inputs based on their
similarities.

Following Axiom III, our previous research investigated
two unsupervised and three supervised learning techniques
for different aspects of the SHM problem. The objective is

to explore these techniques and note their characteristics so
that various combinations of them may be used appropri-
ately in various circumstances. The results of all five tech-
niques for acoustic test data are reported in (Nick et al.
2015). The current paper reviews the results for the three
previously investigated supervised learning techniques and
reports results for two new techniques, which are both vari-
eties of ensemble learning. The previously-investigated su-
pervised learning techniques are support vector machines
(SVM), naive Bayes classifiers, and feed-forward neural net-
works (FNN). For each technique, we tested a version with
principal component analysis (PCA) as a frontend to reduce
the dimensionality of the data (usually to three principal
components), and we tested another version without PCA.
Since PCA generally did not result in significant improve-
ment, the new techniques were tested only without PCA.

For our supervised-learning experiments, class labels on
data points indicate one of six possible source types: im-
pulses of three different durations applied to the neutral axis
(equidistant between the two surfaces) or to the surface of
the specimen. These are cleanly defined events ideal for test-
ing our learning techniques. In practice, class labels would
include sources that are crack growth and fretting (friction-
producing), the former being a threat, the latter generally
being innocuous.

The approach followed here can be generalized for ex-
ploring the characteristics of machine-learning techniques
for monitoring various kinds of structures. One must first
determine what signals are appropriate for monitoring the
structures, (For example, acoustic signals are appropriate
for monitoring metallic structures while signals propagated
through optical fiber are appropriate for bridge type struc-
tures.) One then determines the sensor and communica-
tion infrastructure. Finally, as per this paper, one determines
the characteristics of various supervised and unsupervised
learning techniques for monitoring the structures in ques-
tion (given the signals and infrastructure chosen). Admit-
tedly, the repertoire of techniques explored here is far from
complete, but we have included the ones most often encoun-
tered in structural health monitoring.

The remainder of this paper is organized as follows. The
next sections provides a brief overview of SHM, and the fol-
lowing section looks into previous work in machine learning
for SHM. The section after that explains the supervised ma-
chine learning techniques we use, and the penultimate sec-
tion presents our results. The last section concludes.

Structural Health Monitoring

In general, damage is defined as change introduced into a
system that will adversely affect its current or future perfor-
mance (Farrar and Worden 2007). For mechanical structures,
damage can be defined more narrowly as change to the ma-
terial and/or geometric properties. SHM provides real-time
information on the integrity of the structure. It allows bet-
ter use of resources than scheduled maintenance, which may
take place when there is no need.

In characterizing the state of damage in a system, we can
ask whether there is damage, where in the system it is, what
kind of damage it is, and how severe it is. Damage prognosis

is the estimation of the remaining useful life of a mechanical
structure (Farrar and Lieven 2007).

The field of SHM has matured to the point where several
fundamental axioms or general principles have emerged.
Worden and his colleagues (Worden et al. 2007) suggest
seven axioms for SHM. The following are three that are par-
ticularly relevant to this paper.

Axiom IVa: Sensors cannot measure damage. Fea-
ture extraction through signal processing and statisti-
cal classication is necessary to convert sensor data into
damage information.

Axiom I'Vb: Without intelligent feature extraction, the
more sensitive a measurement is to damage, the more
sensitive it is to changing operational and environmen-
tal conditions.

Axiom V: The length- and time-scales associated with
damage initiation and evolution dictate the required
properties of the SHM sensing system.

The following, however, is the most relevant.

Axiom III: Identifying the existence and location of
damage can be done in an unsupervised learning mode,
but identifying the type of damage present and the dam-
age severity can generally only be done in a supervised
learning mode.

As we address supervised learning in this paper, we expect
our techniques to be able to identify the type of damage and
its severity.

Previous Work in Machine Learning for SHM

Bridge-like structures have been the main structures ad-
dressed in the literature on machine learning for SHM. We
have a quick look at this rather mature area before turning
to our subject, which targets aircraft. (Farrar and Worden
2012) is a text that addresses machine learning for SHM
in general. It is directed to mechanical engineers and ded-
icates most of its space to background. Considering original
results, Figueiredo and his colleagues performed an experi-
ment on a three-story frame aluminum structure that used a
load cell and four accelerometers (Figueiredo et al. 2011).
For each test of state conditions, the features were esti-
mated by using a least squares technique applied to time-
series from all four accelerometers and stored into feature
vectors. They used four machine learning techniques in an
unsupervised learning mode: 1) auto-associative neural net-
work (AANN), 2) factor analysis (FA), 3) singular value de-
composition (SVD), and 4) Mahalanobis squared distance
(MSD). First the features from all undamaged states were
taken into account. Then those feature vectors were split into
training and testing sets. In this case, a feed-forward neural
network was used to build-up the AANN-based algorithm
to perform mapping and de-mapping. The network had ten
nodes in each of the mapping and de-mapping layers and
two nodes in the bottleneck layer. The network was trained
using back-propagation. The AANN- and MSD- based al-
gorithms performed better at detecting damage. The SVD-
and FA- based algorithms performed better at avoiding false
indications of damage.

Tibaduiza and his colleagues (Tibaduiza et al. 2013), in
investigating SHM for an aircraft fuselage and a carbon
fiber reinforced plastic (CFRP) composite plate, made use
of multiway principal component analysis (MPCA), discrete
wavelet transform (DWT), squared prediction error (SPE)
measures and a self-organizing map (SOM) for the classifi-
cation and detection of damage. Each PCA was created us-
ing 66 percent of the whole data set from the undamaged
structure. Signals from the remaining 34 percent of this data
set plus 80 percent of the data set of the damaged structure
were used in classifying with the SOM. This approach had
an area under the ROC curve of 0.9988. A ROC chart is a
display of the performance of a binary classifier, with true
positive rate vs. false positive rate.

Esterline and his colleagues (Esterline et al. 2010) (also
targeting aircraft) ran an experiment with two approaches.
Their first approach used as training instances experimental
data with eighteen traditional acoustic emission features to
train a SVM, while their second approach used six correla-
tion coefficients between basic modes and waveforms from
simulation data also to train a SVM. The SVM with the sec-
ond approach performed as well or better than the SVM us-
ing the first approach, suggesting the superiority of a set of
correlation coefficients over a substantial set of traditional
acoustic emission features for learning to identify the source
of acoustic emissions. It is for this reason that the work re-
ported here uses the six correlation coefficients.

Approach

Recall that the supervised learning techniques we previously
investigated are FNN, SVM, and nave Bayes classifiers and
that the supervised learning techniques we are reporting on
for the first time here are ensemble techniques, specifically
random-forest learning and AdaBoost. An artificial neural
network (ANN) is a computational model based on the struc-
ture and functions of a biological neural network (Bishop
2006). In a FNN, or multilayer perceptron, input vectors are
put into input nodes and fed forward in the network. The in-
puts and first-layer weights will determine whether the hid-
den nodes will fire. The output of the neurons in the hidden
layer and the second-layer weights are used to determine
which of the output layer neurons fire. The error between
the network output and targets is computed using the sum-
of-squares difference. This error is fed backward through the
network to update the edge weights in a process known as
back propagation.

SVMs rely on preprocessing to represent patterns in the
data in a high dimension, usually higher than the original
feature space, so that classes that are entangled in the orig-
inal space are separated by hyper-planes at higher dimen-
sion. Training a SVM (Duda, Hart, and Stork 2001) involves
choosing a (usually nonlinear) function that maps the data to
a higher-dimensional space. Choices are generally decided
by the users knowledge of the problem domain. SVMs can
reduce the need for labeled training instances.

Naive Bayes’ classifiers (NBs) form a supervised learn-
ing technique that belongs to a family of classifiers based
on Bayes’ theorem with a strong assumption about the in-
dependence of features (Duda, Hart, and Stork 2001). As-

sumptions and the underlying probabilistic model allow us
to capture any uncertainty about the model. This is generally
done in a principled way by determining the probabilities of
the outcomes. NBs were introduced to solve diagnostic and
predictive problems. Bayesian classification provides practi-
cal learning through the use of algorithms, prior knowledge,
and observation of the data in combination. A Gaussian NB
assumes that the conditional probabilities follow a Gaussian
or normal distribution.

Ensemble learning is a supervised machine learning tech-
nique that uses multiple hypothesis spaces for predicting a
solution to a problem (Dietterich 2000) (Bennett, Demiriz,
and Maclin 2002) (Maclin and Opitz 1999). Generally, a so-
lution found in a hypothesis space may be a weak solution,
even if the space is constrained to optimal solutions. Ensem-
ble methods combine different solutions to form accurate de-
cisions for a problem. A unique characteristic of ensemble
methods is that the ensemble of solutions can all be accurate
yet diverse. Diversity, however, will occur only if the prob-
lem is unstable. “Unstable” means that minor changes to the
training set affect the classifying performances greatly. We
investigate two forms of ensemble learning: random forest
and AdaBoost.

Choosing a structure for a tree and training decision trees
is time consuming for deep trees. Creating the leaves for the
trees is relatively less time consuming. One solution to this
is to use fixed tree structures and random features. By us-
ing a collection of trees, classifiers can be built. The col-
lection of trees and the randomness of features lead to this
algorithm being called random forest (Breiman 2001) (Liaw
and Wiener 2002). The random forest algorithm works as
follows. A number of user specified trees are randomly cre-
ated, and each tree has the same depth. The training data
is then used to fill in the leaves, which forms predictions
for the classifier. The many trees are formed as a commit-
tee machine of sorts to form a classifier. If features are too
irrelevant, then the classifying performance will not be ade-
quate since there will be a small number of features chosen.
The number of trees is important for the classifying process.
If there are enough trees, the randomness of features cho-
sen will be overridden by the number of relevant features
selected. Meanwhile, the effects of the completely random
features will be diminished.

The concept of boosting involves using a series of weakly
performing classifiers to form some strong performing clas-
sifier. Each classifier can be given some weight that has
some correlation to its performance. As different classifiers
are added, the weights are readjusted. Weights can be min-
imized or maximized depending on the boosting algorithm.
One popular boosting algorithm is the AdaBoost, or adap-
tive boosting algorithm (Schapire 1999) (Ritsch, Onoda,
and Miiller 2001). AdaBoost works as follows. Each data
point in a classifier is given some weight based on its signif-
icance. A series of classifiers is then trained on training data.
A classifier’s weight is then determined based on the predic-
tions it makes on the training data. The weight can be used
to determine some adaptive value, which is the importance
of some classifier. The adaptive value changes based on the
classifiers that have been checked. The poorer performing

classifiers have lower weights then better performing classi-
fiers.

Results

The learning techniques were run on a machine running a
Windows 7 64-bit operating system with a 2.4 GHz quad
core processor and 4 GB of RAM. Software from scikit-
learn (Pedregosa et al. 2011) was used for SVM, Gaussian
NBs, random forests, and AdaBoost. Software from PyBrain
(Schaul et al. 2010) was used for the FNN. Both scikit-learn
and PyBrain are written in Python. We recorded the time
taken by the classifiers produced by each technique to clas-
sify the data points in our test set. This involved executing
Python code.

To avoid overfitting, we used stratified five-fold cross-
validation with our set of 60 data points. In five-fold cross-
validation, the data points are divided into five sets (called
folds), all as nearly as possible of the same size. The classi-
fier is learned using four of the folds, and the remaining fold
is held out for testing. In multiple runs, different folds are
held out for testing. In stratified five-fold cross-validation,
the folds are stratified, that is, each contains approximately
the same proportion of the labels as the complete data set.

For each learning technique, we had 26 groups of cross-
validation runs. In each group, we performed stratified five-
fold cross-validation five times, each time holding out a
different fold. For each cross-validation run, we computed
the precision for the test fold. The precision is defined as
tp/(tp + fp), where ¢p is the number of true positives, and
fp is the number of false positives. We also recorded the
time it took to classify the 12 data points in the test fold.
We then computed the average precision and average clas-
sification time for all five runs in the group. We found the
minimum, maximum, and standard deviation of the average
precision and average time to classify 12 points across the
26 groups of runs.

We ran a SVM with four types of kernel function: linear,
radial basis (RBF, with v = 0.03125), polynomial and sig-
moid (again with v = 0.03125). Table 1 displays the mean
(over 26 groups of five runs each) precision with which our
SVMs classified the 12 data points in our test folds. Note
that, for each kernel function, the mean precision and the
standard deviation turned out the same for each of the 26
groups of runs.

Kernel | RBF | Polynomial | Linear | Sigmoid
Mean | 0.83 0.70 0.88 0.87
St. Dev. | 0.07 0.11 0.11 0.04

Table 1: Precision of the SVMs (12 points, 26 groups of 5
runs)

A Gaussian NB classifier and an FNN were trained and
tested again with 26 groups of five runs each of five-fold
cross-validation. Table 2 shows the resulting ranges of mean
precision values and standard deviations of the precision val-
ues for the 12 data points in the test fold.

Random-forest and AdaBoost classifiers were also trained
and tested with 26 groups of five runs each of five-fold cross-

Technique | Gaussian NB FNN
Mean 0.78-0.78 0.58-0.74
St. Dev. 0.10-0.10 | 0.00 - 0.009

Table 2: Precision of the Gaussian NB and FNN (12 points,
26 groups of 5 runs)

validation. Both of these techniques were implemented with
6, 50, and 75 constituent classifiers. For AdaBoost, the mean
precision for each of the 26 runs for all numbers of con-
stituent classifiers was 0.57 and the standard deviation for
each run was 0.10. Table 3 shows, for the random forest clas-
sifiers, the range in the mean precision values of each group
of five runs and the range in the standard deviations of the
precision values for these runs.

No. of Est. 6 50 75
Mean 0.73-0.87 | 0.82-0.88 | 0.82-0.92
St. dev. 0.05-0.19 | 0.06-0.17 | 0.04 -0.17

Table 3: Precision of the Random Forests with various num-
bers of estimators (12 points, 26 groups of 5 runs)

Regarding precision, the best techniques were SVM with
linear (88%) and sigmoid (87%) kernel functions. The ran-
dom forest with 75 estimators had average precision values
in the range 82-92% and ranks up with these two SVM clas-
sifiers. The random forest with 50 estimators is close be-
hind (82-88%). Next comes the SVM with an RBF kernel
function (83%), followed by the random forest with six es-
timators (73-87%), and then the Gaussian NB (78%). The
FNN performed poorly (58-74%), and the AdaBoosts with
any number of estimators were the worst performing tech-
niques (57%).

Turning to the time it took the classifiers trained with var-
ious techniques to classify the 12 data points in the test fold,
Tables 4 and 5 shows the range of the 26 five-run means of
this time (in milliseconds) for each of the kernel functions
of our SVM. It also shows the standard deviations for these
times. All techniques classified the 12 points in 0.08 to 0.12
msec. Table 6 shows the range of the means and standard de-
viations for this time in milliseconds for Gaussian NB and
FNN to classify the 12 data points.

Kernel RBF Polynomial
Mean 0.09-0.11 0.09-0.10
St.dev. | 0.0004 - 0.02 | 0.0002 - 0.02

Table 4: Time (msec.) for SVMs to classify the 12 data
points in the test fold (26 groups of 5 runs)

Finally, Table 7 shows these times (in msec.) for Ad-
aBoost with 6, 50, and 75 estimators, respectively, to clas-
sify 12 data points, and Table 8 shows the same for random
forest.

The SVM classifiers with all the kernel functions investi-
gated, at around 0.10 msec. to classify 12 data points, were
significantly faster than the next fastest technique, which

Kernel Linear Sigmoid
Mean | 0.08-0.11 | 0.10-0.12
St.dev. | 0.001-0.04 | 0.001 - 0.02

No. of Est. 6 50 75
Mean 0.49-0.59 | 3.70-3.99 | 559 -5.88
St. dev. 0.001-0.18 | 0.04-0.18 | 0.04 -0.57

Table 5: Time (msec.) for SVMs to classify the 12 data
points in the test fold (26 groups of 5 runs)

Technique | Gaussian NB FNN
Mean 0.22-0.27 1.60 - 1.91
st.dev. 0.0003 - 0.07 | 0.001 - 0.64

Table 6: Time (msec.) for Gaussian NB and FNN to classify
the 12 data points in the test fold (26 groups of 5 runs)

was Gaussian NB, in the range 0.22-0.27 msec. Random for-
est with 6 estimators (0.32-0.36 msec.) was close behind,
followed at a significant interval by Adaboost with 6 esti-
mators (0.49-0.59). The remaining classifiers took well over
one msec. FNN (1.60-1.91) was close to random forest with
50 estimators (1.58-1.75 msec.). AdaBoost with 50 estima-
tors (3.70-3.99 msec.) was slower than random forest with
75 estimators (2.29-2.45 msec.), and AdaBoost with 75 es-
timators (5.59-5.88 msec.) was significantly slower still.
SVM with an linear or sigmoid kernel function was the
most precise technique (87 or 88%) and the technique that
classified data points fastest (taking about 0.1 msec. to clas-
sify 12 data points). Random forest had an increase in preci-
sion of only 1 to 12% going from 6 to 50 estimators, but the
time required to classify 12 data points went from 0.32-0.36
msec. to 1.58-1.75 msec. Increasing the number of estima-
tors from 50 to 75 (50%) increased the precision modestly
(from 0.82-0.88 msec. to 0.82-0.92 msec.), but enough to ri-
val the SVMs, while increasing the time to classify 12 data
points by 40-45%. So the random forest technique proved
reasonably precise if somewhat on the slow side. AdaBoost
was a complete disappointment as its precision (56%) was
worse than any other technique, the second worst being FNN
(58-74%). With six estimators, Adaboost was about three
times faster than FNN, but with just 50 estimators (3.70-3.99
msec.) it is significantly slower than FNN (1.60-1.91 msec.).

Conclusion

We report here on work that is part of our development of
an agent-based structural health monitoring (SHM) system.
The data used are acoustic signals, and one attempts to clas-
sify these signals according to source. The agents are for
the most part proxies for communication- and computation-
intensive techniques. They negotiate to determine a pattern
of techniques for understanding the situation at hand. Such
a pattern determines a workflow. The agents respond in an
intelligent way by determining a constellation of techniques
appropriate for the situation at hand. It is critical that the
system have a repertoire of classifiers with different charac-
teristics so that a combination appropriate for the situation
at hand can generally be found.

Following Worden and his colleagues (Worden et al.
2007), we use unsupervised learning for identifying the ex-
istence and location of damage but supervised learning for

Table 7: Time (msec.) for AdaBoost with various numbers
of estimators to classify the 12 data points in the test fold
(26 groups of 5 runs)

No. of Est. 6 50 75
Mean 0.32-0.36 1.58-1.75 | 2.29-2.45
st. dev. 0.0004 - 0.06 | 0.02-0.28 | 0.03-0.15

Table 8: Time (msec.) for random forest with various num-
bers of estimators to classify the 12 data points in the test
fold (26 groups of 5 runs)

identifying the type and severity of damage. Our objective at
this stage is to explore various machine-learning techniques
and note their characteristics so that various combinations of
them may be used appropriately in various circumstances.
This paper in particular reports on experiments with super-
vised learning techniques using data typical of our domain.
The supervised learning techniques investigated are support
vector machines (SVMs), naive Bayes classifiers (NBs), and
feed-forward neural networks (FNNs) as well as those newly
reported with this paper, the ensemble techniques random
forests and AdaBoost. SVMs were used with four kernel
functions: linear, radial basis (RBF, with v = 0.03125),
polynomial, and sigmoid (also with v = 0.03125). Random
forest and AdaBoost both were implemented with 6, 50, and
75 estimators.

As before, SVM with a linear or sigmoid kernel function
was the most precise technique and the technique that classi-
fied data points fastest. The random forest technique proved
reasonably precise but somewhat slow. Increasing the num-
ber of estimators made no difference in the precision of Ad-
aBoost and only a modest improvement for random forest,
but the time required to classify data points appeared to be
nearly linear in the number of estimators. AdaBoost was a
complete disappointment as it produced the worst precision
of any of the techniques, and even with just six estimators it
took twice as long to classify data points as Gaussian NB.

These results apparently leave no room for intelligent de-
cision by our multiagent system as it appears that a classi-
fier trained as an SVM with either a linear or sigmoid kernel
function should be chosen every time. But recall that we con-
sider combinations of classifiers trained in unsupervised and
supervised learning mode, the first to find existence and lo-
cation of damage and then the second to determine the extent
and type of damage. For unsupervised learning, we found
(Nick et al. 2015) that self-organizing maps (SOMs) appear
to give more reliable classifications than k-means classifiers
although they take much longer to classify data points. So
with unsupervised learning there are tradeoffs and a mean-
ingful choice. In fact, there is still a large number of tech-
niques to investigate, even when restricting ourselves to en-
semble techniques. And many techniques can be adapted in
subtle ways not considered here. Finally, even among super-

vised learning techniques, some might be better than others
in specific circumstances while being inferior in general.

In a practical situation, we look at a large number of
events and watch for cases where hundreds are classified as
originating from crack growth. So we can tolerate a certain
amount of inaccuracy. Cracks, however, grow over months,
yet relevant events may be only milliseconds apart, and mon-
itoring a large structure may put a premium on speed. So the
extent to which classification time is critical is an involved
issue.

Future work will continue investigating supervised and
unsupervised learning techniques, looking for combinations
of techniques appropriate for various situations. One specific
topic will be random forests with boosting. We stated how
our approach can be generalized for exploring the character-
istics of machine-learning techniques for monitoring various
kinds of structures. We intend also to make this generaliza-
tion explicit.

Acknowledgments

The Authors would like to thank Army Research Office
funding for proposal number 60562-RT-REP and NASA
Grant # NNX09AVO08A for the financial support. Thanks are
also due to members of the ISM lab and Dr. M. Sundaresun
of the Mechanical Engineering Department at North Car-
olina A&T State University for their assistance.

References

Bennett, K. P;; Demiriz, A.; and Maclin, R. 2002. Exploiting
unlabeled data in ensemble methods. In Proceedings of the
eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 289-296. New York,NY:
ACM.

Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. New York, NY: Springer.

Breiman, L. 2001. Random forests. Machine learning
45(1):5-32.

Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In Multiple Classifier Systems, 1-15. New York, NY:
Springer.

Duda, R. O.; Hart, P. E.; and Stork, D. G. 2001. Pattern
Classification. Hoboken, NJ: John Wiley & Sons.

Esterline, A.; Krishnamurthy, K.; Sundaresan, M.; Alam, T.;
Rajendra, D.; and Wright, W. 2010. Classifying acous-
tic emission data in structural health monitoring using sup-
port vector machines. In Proceedings of AIAA Infotech@
Aerospace 2010 Conference.

Farrar, C. R., and Lieven, N. A. 2007. Damage prognosis:
The future of structural health monitoring. Philosophical
Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 365(1851):623—
632.

Farrar, C. R., and Worden, K. 2007. An introduction to
structural health monitoring. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 365(1851):303-315.

Farrar, C. R., and Worden, K. 2012. Structural Health Moni-
toring: A Machine Learning Perspective. Hoboken, NJ: John
Wiley & Sons.

Figueiredo, E.; Park, G.; Farrar, C. R.; Worden, K.; and
Figueiras, J. 2011. Machine learning algorithms for dam-
age detection under operational and environmental variabil-
ity. Structural Health Monitoring 10(6):559-572.

Foster, I.; Jennings, N. R.; and Kesselman, C. 2004. Brain
meets brawn: Why grid and agents need each other. In Pro-
ceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 1, 8-15.
Piscataway, NJ: IEEE Computer Society.

Liaw, A., and Wiener, M. 2002. Classification and regres-
sion by randomforest. R news 2(3):18-22.

Maclin, R., and Opitz, D. 1999. Popular ensemble meth-
ods: An empirical study. Journal of Artificial Intelligence
Research.

Nick, W.; Asamene, K.; Bullock, G.; Esterline, A.; and Sun-
daresan, M. 2015. A study of machine learning techniques
for detecting and classifying structural damage. Forthcom-
ing.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learn-
ing in python. The Journal of Machine Learning Research
12:2825-2830.

Ritsch, G.; Onoda, T.; and Miiller, K.-R. 2001. Soft margins
for adaboost. Machine learning 42(3):287-320.

Schapire, R. E. 1999. A brief introduction to boosting. In
Ijcai, volume 99, 1401-1406.

Schaul, T.; Bayer, J.; Wierstra, D.; Sun, Y.; Felder, M.;
Sehnke, F.; RiickstieB, T.; and Schmidhuber, J. 2010. Py-
brain. The Journal of Machine Learning Research 11:743—
746.

Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L.;
Rodellar, J.; and Fritzen, C.-P. 2013. A study of two un-
supervised data driven statistical methodologies for detect-
ing and classifying damages in structural health monitoring.
Mechanical Systems and Signal Processing 41(1):467—-484.
Wooldridge, M. 2009. An Introduction to Multiagent Sys-
tems. Hoboken, NJ: John Wiley & Sons.

Worden, K.; Farrar, C. R.; Manson, G.; and Park, G. 2007.
The fundamental axioms of structural health monitoring.
Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Science 463(2082):1639—-1664.

